On the Geometry of External Spectral Factors and the Riccati Inequality
نویسنده
چکیده
We study the geometric structure of the spectral factors of a given spectral density Φ. We show that these factors can be associated to a set of invariant subspaces and we exhibit the manifold structure of this set, providing also an explicit parametrization for it. We also make some connection with the set of solutions to the Riccati Inequality. 1991 Mathematics Subject Classification: 93E03
منابع مشابه
Zeros of Spectral Factors, the Geometry of Splitting Subspaces, and the Algebraic Riccati Inequality*
In this paper we show how the zero dynamics of (not necessarily square) spectral factors relate to the splitting subspace geometry of stationary stochastic models and to the corresponding algebraic Riccati inequality. We introduce the notion of output-induced subspace of a minimal Markovian splitting subspace, which is the stochastic analogue of the supremal output-nulling subspace in geometric...
متن کاملA Parametrization of External Spectral Factors
We study the geometric structure of the spectral factors of a given spectral density Φ. We show that these factors can be associated to a set of invariant subspaces and we exhibit the manifold structure of this set, providing also an explicit parametrization for it, in the special case of coinciding algebraic and geometric multiplicity of the zeros of the maximum-phase spectral factor. We also ...
متن کاملConvergence analysis of spectral Tau method for fractional Riccati differential equations
In this paper, a spectral Tau method for solving fractional Riccati differential equations is considered. This technique describes converting of a given fractional Riccati differential equation to a system of nonlinear algebraic equations by using some simple matrices. We use fractional derivatives in the Caputo form. Convergence analysis of the proposed method is given an...
متن کاملRiccati equationsThe analytic center of LMI ' s and Riccati equations 1
In this paper we derive formulas for constructing the analytic center of the linear matrix inequality deening a positive (para-hermitian) transfer function. The Riccati equations that are usually associated with such positive transfer functions, are related to boundary points of the convex set. In this paper we show that the analytic center is also described by a closely related equation, and w...
متن کاملOn the metric triangle inequality
A non-contradictible axiomatic theory is constructed under the local reversibility of the metric triangle inequality. The obtained notion includes the metric spaces as particular cases and the generated metric topology is T$_{1}$-separated and generally, non-Hausdorff.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006